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57 ABSTRACT

A system and method for determining fluid flow of compress-
ible and non-compressible liquids includes an input receiving
an object model defined as a plurality of cells having nodes, a
processor and memory. The processor is configured for: dis-
cretizing a partial differential equation (PDE) corresponding
to the received model; for each node P: (i) locating all neigh-
boring cells that share the node P; establish a finite difference
stencil at each cell center, and identify stencil intersection
points with cell boundary edges; calculate an approximate
solution of the PDE at the intersection points; (ii) approxi-
mating the PDE at the cell center of the neighboring cells
using the stencil and discretized PDE; and (iii) updating a
solution of the PDE at the node P by using the solution of
approximated discretized PDE at all the neighboring cell
centers; and iteratively updating the solution for all nodes P
from an initial guess until a convergence criterion is satisfied.

17 Claims, 22 Drawing Sheets
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1
SYSTEM AND METHOD FOR DETERMINING
FLUID FLOW OF COMPRESSIBLE AND
NON-COMPRESSIBLE LIQUIDS

RELATED APPLICATIONS

This application claims the benefit under 35 USC §119(e)
to U.S. Provisional Application No. 61/457,589, filed on Apr.
26, 2011, the contents of which are hereby incorporated by
reference in their entirety.

FIELD OF THE INVENTION

This invention relates to a system and method for model-
ling internal and/or boundary conditions, as for example to
model or determine fluid flows in, around and/or across
objects or structures and, in particular, for both compressible
and non-compressible liquids.

BACKGROUND OF THE INVENTION

Computer methods and algorithms can be used to analyze
and solve complex systems involving various forms of fluid
dynamics having inputted boundary conditions. For example,
computer modelling may allow a user to simulate the flow of
air and other gases over an object or model the flow of fluid
through a pipe. Computational fluid dynamics (CFD) is often
used with high-speed computers to simulate the interaction of
one or more fluids over a surface of an object defined by
certain boundary conditions. Typical methods involve large
systems of equations and complex computer modelling and
include traditional finite difference methodology, cell-cen-
tered finite volume methodology and vertex-centered finite
volume methodology.

Traditional Finite Difference Methodology

Traditional Finite Difference Methodology (TFDM)
requires a structured grid system, a rectangular domain and
uniformed grid spacing. TFDM cannot be applied on a mesh
system with triangular cells (elements). Rather, cells must be
quadrilateral (2D) and cannot be polygonal (i.e., number of
sides=4). In 3D, cells must be rectangular cubes.

TFDM typically requires the use of coordinate transforma-
tions (i.e., grid generation) for curvilinear domains, to map
the physical domain to a suitable computational domain. In
addition, there may be a need to use a multiblock scheme if
the physical domain is too complicated. Partial differential
equations (PDEs) must be transformed to the computational
domain.

Traditional Finite Difference Methodology is typically dit-
ficult to deal with in complicated grid arrangements. Special
treatment may be required near boundaries of the domain
(e.g., in staggered grid systems or for higher-order schemes).
Even with coordinate transformations, highly irregular
domains may create serious difficulties for accuracy and con-
vergence due to numerical discontinuities in the transforma-
tion metrics. Cell-Centered Finite Volume Methodology/Ver-
tex-Centered Finite Volume Methodology
Cell-Centered Finite Volume Methodology (CCFVM) and
Vertex-Centered Finite

Volume Methodology (VCFVM) achieve greater flexibil-
ity in grid arrangement. Cells can be polygonal (e.g., trian-
gular) in 2 Dimensional space or polyhedral (e.g., tetrahedral,
prismatic) in 3 Dimensional space. With CCFVM/VCFVM
there is no need for coordinate transformations to a compu-
tational domain. Rather, all calculations can be done in physi-
cal space. As well, grid smoothness is not an issue. Cell-
centered schemes evaluate the dependent variable at the
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centroid of each cell. Vertex-centered (or vertex-based)
schemes evaluate the dependent variable at the vertices of
each cell.

With CCFVM/VCFVM, inaccuracies due to calculation of
fluxes across cell faces may be difficult to deal with. In addi-
tion, there are difficulties associated with treatment near
boundaries for higher-order schemes, and accuracy and con-
vergence issues associated with cells that are severely skewed
or have a high aspect ratio.

Accordingly, current computer modelling schemes are
limited in the form of objects they can model and require
different models and algorithms for different fluid applica-
tions, such as between compressible and non-compressible
fluids.

SUMMARY OF THE INVENTION

It is an object of this invention to provide a better method
and system for determining and/or modelling boundary con-
ditions, as for example, to determine or compute fluid dynam-
ics of compressible and non-compressible liquids in, around
oracross objects. In one particular embodiment, it is an object
of this invention to provide a better method and system to
compute the fluid dynamics of compressible liquids in aero-
nautical application, the aeronautical applications having cer-
tain boundary conditions.

Furthermore, another object of this invention to provide a
better method and system for computing the fluid dynamics
of'non-compressible liquids within a pipe or transport mecha-
nism, the pipe or transport mechanism having certain bound-
ary conditions.

The inventors have appreciated that if the solution domain
can be discretized into a smooth structured grid, the FDM is
better than the FVM (or the FEM) due to its efficiency. In
particular, an FDM method requires less memory and has
better stability. Furthermore, a system and method relying on
an FDM has better convergence properties.

In one aspect, the present invention resides in a system for
modelling internal and/or boundary conditions and more
preferably, by determining fluid flow of compressible and
non-compressible liquids, as for example, in, around or
across an object or structure.

In one cell-centered finite different approach described
hereafter lies in the discovery and development of a unified
scheme for the numerical solution of Partial Differential
Equations (PDEs), irrespective of their physical origin, which
is solely based on the finite difference method, but is imple-
mented in an innovative fashion that allows the use of an
arbitrary mesh topology. Thus, the CCFDM enjoys the sim-
plicity and strength of the traditional FDM, and the power and
flexibility of the FVM and FEM.

The resulting program may evolve into entirely new mul-
tiphysics computational continuum mechanics software, or
replace the core numerical processing component of some
existing software packages with a much simpler and more
efficient algorithm which permits a natural and seamless cou-
pling of fluid and solid interaction, allows for a more precise
analysis of accuracy and produces faster, more accurate and
more reliable results.

The system may include input means for receiving a model
of'an object defined as a plurality of cells having a plurality of
nodes P and a processor coupled to a memory. The processor
may be configured for implementing the steps of discretizing
a partial differential equation corresponding to the received
model of the object; for each node P in the plurality of nodes
P: (i) locating all neighbouring cells that share the node P,
each of the neighbouring cells having a cell center; (ii)



US 9,268,887 B2

3

approximating the partial differential equation at the cell
center of each of the neighbouring cells using the discretized
partial differential equation; and (iii) updating a solution of
the partial differential equation at the node P by using the
approximated discretized partial differential equation at all
the neighbouring cell centers; and iteratively updating the
solution for all the nodes P from an initial guess until a
convergence criterion is satisfied.

In another aspect, the present invention resides in a com-
puter-implemented method for approximating a partial dif-
ferential equation for determining fluid flow of compressible
and non-compressible liquids. The method comprising: dis-
cretizing the partial differential equation; receiving a model
of'the object defined as a plurality of cells having a plurality
of nodes P; for each node P in the plurality of nodes P: (i)
locating all neighbouring cells that share the node P, each of
the neighbouring cells having a cell center; (ii) approximating
the partial differential equation at the cell center of each of the
neighbouring cells using the discretized partial differential
equation; and (iii) updating a solution of the partial differen-
tial equation at the node P by using the approximated dis-
cretized partial differential equation at all the neighbouring
cell centers; and iteratively updating the solution for all the
nodes P from an initial guess until a convergence criterion is
satisfied.

In yet another aspect, the present invention resides in a
computer readable medium having instructions stored
thereon that when executed by a computer implement a
method for approximating a partial differential equation for
determining fluid flow of compressible and non-compressible
liquids. The method may include discretizing the partial dif-
ferential equation; receiving a model of an object defined as a
plurality of cells having a plurality of nodes P; for each node
P in the plurality of nodes P: (i) locating all neighbouring cells
that share the node P, each of the neighbouring cells having a
cell center; (ii) approximating the partial differential equation
at the cell center of each of the neighbouring cells using the
discretized partial differential equation; and (iii) updating a
solution of the partial differential equation at the node P by
using the approximated discretized partial differential equa-
tion at all the neighbouring cell centers; and iteratively updat-
ing the solution for all the nodes P from an initial guess until
a convergence criterion is satisfied.

Further and other features of the invention will be apparent
to those skilled in the art from the following detailed descrip-
tion of the embodiments thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

Reference may now be had to the following detailed
description taken together with the accompanying drawings,
in which:

FIG. 1 shows schematically a computer system used in the
modelling of flow dynamics in accordance with an embodi-
ment of the present invention;

FIG. 2A shows a comparison of different modeling
approaches of an embodiment of the present invention in
comparison to prior art methods;

FIG. 2B shows a comparison of different modeling
approaches of an embodiment of the present invention in
comparison to prior art methods;

FIG. 2C shows a comparison of different modeling
approaches of an embodiment of the present invention in
comparison to prior art methods;

FIG. 2D shows a comparison of different modeling
approaches of an embodiment of the present invention in
comparison to prior art methods;
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FIG. 2E shows a comparison of different modeling
approaches of an embodiment of the present invention in
comparison to prior art methods;

FIG. 3A to 3C show examples of grid arrangements on
which CCFDM, CCFVM and VCFVM can be applied, but
TFDM cannot be applied;

FIGS. 4 and 4 A to 4D show schematically a generic node P
and exemplary two dimensional models, in accordance with
an embodiment of the present invention;

FIG. 5 shows a transformation of a cell center from a
physical space (x, y) to a computational space (&, 1) in accor-
dance with an embodiment of the present invention;

FIG. 6A shows a flowchart for calculating flow dynamics
in amodeled system in accordance with an embodiment of the
present invention;

FIG. 6B shows a flowchart for calculating flow dynamics in
amodeled system in accordance with another embodiment of
the present invention;

FIGS. 7A to 7D show different representational models for
a unit square in accordance with an embodiment of the
present invention;

FIG. 8A and FIG. 8B show a comparison between a solu-
tion for the Laplace equation on a unit square with Dirichlet
boundary conditions using an embodiment of the present
invention with the exact solution;

FIGS. 9A to 9C show a comparison of CCFDM, FEM and
the exact solution along horizontal lines y=0.05, 0.5 and 0.95,
in accordance with an embodiment of the present invention;

FIG. 10A and FIG. 10B show different representational
models for a unit disk in accordance with an embodiment of
the present invention

FIGS. 11A to 11C show a comparison of a Laplace equa-
tion on a square with Dirichlet and Neumann boundary con-
ditions using an embodiment of the present invention with a
TFDM solution;

FIGS. 12A to 12E show a comparison of a Laplace equa-
tion on a hexagonal ring with Dirichlet and Neumann bound-
ary conditions, in accordance with an embodiment of the
present invention; and

FIG. 13 shows a generic three dimensional cell for a three
dimensional model, in accordance with an embodiment of'the
present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

FIG. 1 illustrates schematically a computer system 10 on
which a preferred embodiment of the present invention may
be implemented. The computer system 10 includes a system
bus 12 for communicating information, and a processor 16
coupled to the bus 12 for processing information.

The computer system 10 further comprises a random
access memory (RAM) or other dynamic storage device 25
(referred to herein as main memory), coupled to the bus 12 for
storing information and instructions to be executed by pro-
cessor 16. Main memory 25 may also be used for storing
temporary variables or other intermediate information during
execution of instructions by the processor 16. The computer
system 10 may also include a read only memory (ROM)
and/or other static storage device 26 coupled to the bus 12 for
storing static information and instructions used by the pro-
cessor 16.

A data storage device 27 such as a magnetic disk or optical
disc and its corresponding drive may also be coupled to the
computer system 10 for storing information and instructions.
The computer system 10 can also be coupled to a second /O
bus 18 via an I/O interface 14. A plurality of /O devices may
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be coupled to the I/O bus 18, including a display device 24, an
input device (e.g., an alphanumeric input device 23 and/or a
cursor control device 22), and the like. A communication
device 21 is used for accessing other computers (servers or
clients) via an external data network (not shown). The com-
munication device 21 may comprise a modem, a network
interface card, or other well-known interface devices, such as
those used for coupling to Ethernet, token ring, or other types
of networks.

Embodiment #1
Compressible Fluids

In a preferred embodiment, computer system 10 is used to
model the fluid dynamics of an aircraft landing gear through
the air, such as during aircraft landing and in flight. In use of
the system 10, a computer-aided designed (CAD) represen-
tation of the aircraft landing gear and supporting structure is
inserted into the model.

Airflow, as a compressible fluid, may be constrained by
initial conditions entered as part of the model or taken from
sensors from real-world applications. The airflow may be
modeled as a partial differential equation, as known in the art
of fluid dynamics. For example, data from temperature and
speed sensors may be included in the model, taken from
real-world applications.

Once the boundary conditions and initial conditions have
been inputted, the profile is input into the system 10 of the
present invention and when the solution converges to a steady
state, the solution is outputted. The solution may describe the
flow of compressible fluid for the specific boundary condi-
tions and initial conditions inputted into the model.

The system advantageously allows a user to determine and
analyze the turbulence in the compressible fluid caused by the
different aircraft components passing through the airflow.
The steady state output can be used to identify and analyze
different flow regimes, such as laminar flow and turbulent
flow including eddies, vortices and other flow instabilities. In
addition, the behaviour of the fluid about the boundary layer
is also outputted. In particular, the noise of the flow over the
aircraft component can be modeled including the frequency
of any noise created.

It should be understood that the system 10 is capable of
modeling any type of compressible fluid through a wide vari-
ety of applications, as further discussed below. Besides mod-
elling the air passing over an aircraft component, other appli-
cations may include engine design, wind-tunnel effects and
other airflow applications. In addition, the compressible fluid
may be in a confined space, such as within a tunnel, or in a
non-confined space, such as in flight.

Embodiment #2
Non-Compressible Fluids

The above-described computer system 10 can also be used
to model the fluid dynamics of a non-compressible fluid
through a defined space. For example, in a preferred embodi-
ment, the computer system 10 can model a fluid such as water
through a pipe or other transport mechanism.

As with the compressible embodiment, described above, a
computer-aided designed (CAD) representation of the pipe is
inserted into the simulation. Typical boundary conditions
may be represented in the model.

The system 10 then models the flow of the non-compress-
ible fluid, i.e. water or gas, through the pipe in successive
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stages. The non-compressible fluid may be further defined by
its initial conditions or parameters. For example, the non-
compressible fluid may include particulate matter and have a
specific viscosity. The non-compressible fluid may be con-
strained by initial conditions entered as part of the computer
simulation or taken from sensors from real-world applica-
tions. These parameters may be inserted into the partial dif-
ferential equation (PDE) used to model the compressible fluid
flow. For example, flow and temperature data from real-world
flow-analysis may be inputted automatically into the simula-
tion.

Once the solution of the system has converged to a steady
state, the solution is outputted. The output data transformed
into a usable format for describing the flow of the non-com-
pressible fluid for the specific boundary conditions and initial
conditions inputted into the simulation.

The solution to the simulation advantageously allows a
user to determine and analyze the turbulence in the non-
compressible fluid caused by the boundary conditions (i.e. the
pipe). The steady state output can be used to identify and
analyze different flow regimes, such as laminar flow and
turbulent flow including eddies, vortices and other flow insta-
bilities. In addition, the behaviour of the fluid about the
boundary layer is also outputted. Furthermore, the simulation
may model the aggregate (i.e. the particulate matter) in the
fluid and the Reynolds Number (Re), as would be known to
person skilled in the art.

It should be understood that the system 10 is capable of
modeling any type of non-compressible fluid through a wide
variety of applications. Besides simulating the flow of fluid
passing through a pipe, other applications may include oil and
gas applications and hydraulics.

Comparison of Cell-Centered Finite Difference Methodol-
ogy and Prior Art Methods

A improved method of solving partial differential equa-
tions (PDEs) in accordance with the present invention is now
described.

FIGS. 2A to 2E show grid comparisons of Traditional
Finite Difference Methodology (TFDM), Cell-Centered
Finite Difference Methodology (CCFDM) in accordance
with the present invention, Cell-Centered Finite Volume
Methodology (CCFVM) and Vertex-Centered Finite Volume
Methodology (VCFVM) across selected illustrated grid
arrangements are illustrated. As shown, the four different
methodologies: TFDM, CCFDM, CCFVM and VCFVM can
be used to solve the illustrated grid arrangement.

The TFDM requires that the PDE be applied at the node P.
The TFDM is configured to use finite difference approxima-
tions for the derivatives in the PDE to “discretize” the equa-
tion.

For the CFDM also shown in FIG. 2A, the PDE is applied
at cell centers 1, 2, 3 and 4. The stencil is confined to each cell
described. Furthermore, finite different approximations are
used for the derivatives in the PDE to “discretize” the equa-
tion.

For the CCFVM also shown in FIG. 2A, the PDE is written
in integral form and applied to each cell. The divergence
theorem is used to write volume integrals as line integrals
around the control volumes. In this manner, the line integrals
can be approximated.

For the VCFVM also shown in FIG. 2A, the PDE is also
written in integral form and applied to the control volume
(CV) around P. The divergence theorem is used to write
volume integrals as line integrals around the control volume.
In this manner, the line integrals can be approximated.

FIG. 2B shows additional grid arrangements where all four
methodologies may be used. For the TFDM, the grid arrange-
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ment must first be mapped to a unit square, as shown.
CCFDM, CCFVM and VCFVM may be applied to provide
solutions, as described in the previous case shown in FIG. 2A.

FIG. 2C illustrates a grid arrangement on which CCFDM,
CCFVM and VCFVM can be applied, but TFDM cannot.

FIG. 2D illustrates a grid arrangement where the four dif-
ferent methodologies can be used to solve the illustrated grid
arrangement. However, in order to use TFDM, the grid
arrangement must first be transformed using multiblock
methodology and transformations, as shown in the figure.
CCFDM, CCFVM and VCFVM may be applied to provide
solutions, as described in the previous case shown in FIG. 2A.

FIG. 2E illustrates curvilinear grid arrangement in which
the four different methodologies can be used to solve a PDE.
As shown, both TFDM and CCFDM first require coordinate
transformations to map the solution domain to a rectangular
plane. Once transformed, TFDM and CCFDM may be
applied, as before. For CCFVM and VCFVM, no transforma-
tions are required.

FIGS. 3A to 3C illustrates additional examples of grid
arrangements on which CCFDM, CCFVM and VCFVM can
be applied, but TFDM cannot.

When referring to a perfect solution, a problem or grid
configuration is selected which has an absolute mathematical
solution. The applicant’s method is applied to the same prob-
lem or grid and then the results of the two calculations are
compared.

Cell-Centered Finite Difference Method

To implement the system of the present invention, an
improved Cell-Centered Finite Difference Method
(CCFDM) has been proposed.

To illustrate the applicant’s new numerical approximation
process, in one example, a given Partial Differential Equation
(PDE), or system of PDEs to be solved on a mesh arrange-
ment containing elements (or cells), is shown in FIG. 4. Given
the geometry of each cell, i.e., knowing the Cartesian coor-
dinates of the cell vertices, the location of the cell centroids
ccl, cc2, cc3, ccd, cc5, cc6, cc7 is determined. Then, a finite
difference stencil is constructed for each cell. This stencil has
the unique feature that it is confined to the cell, intersecting
the boundary edges of each cell at points w, e, s and n.

For example, by examining the differencing stencil in cell
#1, the distances from cc1 to e and w are shown as not equal.
Similarly, the distances from cc1 to s and n are not equal. This
inequality will degrade the accuracy of any central difference
formula about the point ccl. To overcome this problem, 1D
mappings are used from x to § and from y to 1 such that the
line segment ‘w-ccl-e’ is mapped to a line segment -1<E<1
where ccl is mapped to £=0. A similar mapping is used to map
the line segment ‘s-cc1-#" to —1=m=<1, as is shown in FIG. 5.

The PDE, which will be applied at the cell centroid ccl,
must also be transformed to the computational space. Con-
sider, for example, the model elliptic equation (Poisson eqn.):

T

* T
—+B—y2=f(x,y)

dx?

Under the 1D mappings x=x(E), y=y(1), this equation
transforms to
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If one uses 3-point central differencing to approximate the
partial derivatives in this equation, then the resulting differ-
ence equation can be written as:

a,TI..=a,T.aT+aT+a,T,—f ;

cotce T Pwtwliet T

where the coefficients are expressed in terms of the physical
Cartesian coordinates of the w, e, s and n points. This equation
can be solved iteratively for the value of T at the cell centroid,
assuming we have previous iteration values for T, T, T and
T,.

Step 1: Create a mesh for the region of interest. Label all
nodes N0, N1, N2, etc. (FIG. 4A). Establish a fixed reference
frame Oxy. Line segments N1-N2, N2-N3, - - - | N6-N7 form
the interface boundary curve between the solid material (solid
region) and the fluid material (fluid region) depicted in this
model. The mesh in the model can be arbitrary or user influ-
enced, e.g., the user can apply a finer mesh (smaller size cells)
in the areas of the model where variables have high gradients.
The finer mesh will result in higher resolution in those areas.

Step 2: Select any node in the mesh, and determine the cells
sharing that node. For example, in the diagram below, P is a
node in the solid region and Q is a node in the fluid region. The
cells surrounding P are P-N1-N4, P-N4-N6, P-N6-N7-N8-
N9, etc. (as shown in FIG. 4B). The cells surrounding Q are
Q-N17-N24-N25, Q-N25-N26-N19, Q-N19-N6-N5 and
Q-N5-N4-N17.

Step 3: For each cell surrounding P (or QQ), determine the
coordinates of the cell centroids ccl, cc2, etc. (FIG. 4C)

Step 4: Within each cell surrounding P (or Q), create a
stencil centred at the cell centroid with arms parallel to the x,
y, coordinate directions defined by the fixed reference frame,
intersecting the cell faces at points w, e, s and n. For example,
for node P refer to the cell formed by nodes P-N13-N1 with
cell centre ccl. For node Q refer to the cell formed by nodes
Q-N17-N24-N25. As an alternative to using cell centroids in
Steps 3 and 4, it is possible to determine the coordinates of the
point cc' in the cell which has the property that the length of
the line segments w-cc' and cc'-e are equal and the length of
the line segments s-cc' and cc'-n are equal (FIG. 4D).

Step 5: For each cell surrounding P (or QQ), determine the
coordinates of the face intersection points w, ¢, s and n.

Step 6: Repeat Steps 2-5 for all nodes in the mesh.

Step 7: Select a node P in the mesh at which the dependent
variable (T) is to be evaluated, and collect all the cells sur-
rounding P. This node P may be in the solid region, in the fluid
region, or on the interface boundary curve.

Step 8: For each cell surrounding node P, apply the appro-
priate mathematical equation (e.g., PDE for solids, or PDE
for fluids), defined by the medium in which the cell lies, at the
cell centre. Approximate the continuous derivatives in the
mathematical equations by standard finite difference formu-
lae, applied on the stencils created in Step 4, to formulate a
discrete approximation to the continuous equations. For each
cell, this will result in a finite difference equation of the form

a. I +a, Tl +a Tl +a,T+a,T,=S,.

&
if the cell is a solid cell, and of the same mathematical form

a, I . +a,l +a Tl +aTl+a,Tl,=S,.

ot ceTihpl Tl T

M

if the cell is a fluid cell. In these equations the subscripts cc, w,
etc., refer to the cell centre, face intersection point w, etc. The
coefficients a__, a,, a_, a,, a,, and the source term S__ in
equations (1) and (2) are not the same. These quantities
depend on the nature of the continuous model equation (i.e.,
whether describing the solid motion or the fluid motion), the
differencing scheme used, the cell topology and the coordi-

nates of the face intersection points. Thus, in particular, the
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physical attributes of the medium, such as thermal conduc-
tivity, density, Young’s modulus, Poisson’s Ratio or modulus
of elasticity for a solid cell, or such as kinematic viscosity,
density, thermal conductivity or specific heat for a fluid cell,
are embedded in these coefficients. From the computer’s
perspective, for each cell these coefficients are fixed constants
and the solution process is identical, regardless of whether the
cell is solid or fluid.

Step 9: The quantities T,,, T, T, and T,, in equation (1) or
(2) are approximated using an appropriate interpolation
scheme based on neighbouring nodal and/or centroid values.
These terms are taken to the right-hand side of the equation,
and equation (1) or (2) is now approximated by

- ® ® ® *
ol ee=See=ar, 1, *~a I ~aT*=a,T,

®
where the superscript * refers to the approximate value

obtained from the interpolation above.
Step 10: Equation (3) is solved for the quantity T __:

_ Se-a,Ty-aT; —aT! —a,T;

T. = )

aCC

Step 11: Repeat Steps 8-10 for each cell surrounding P,
obtaining the value of T at all surrounding cell centres.

Step 12: Determine the value of T at node P by interpola-
tion of the surrounding cell centre values.

Step 13: Select a new node P in the mesh and repeat Steps
8-12. Continue until all nodes in the mesh have been updated.
This completes one sweep of the mesh.

The solution process described above] is iterative. Nodal
values are repeatedly updated until some prescribed conver-
gence criterion is satisfied.

Partial Differential Equations Solution Procedure

The present system thus provides a preferred partial difter-
ential equations procedure shown in the process algorithm of
FIGS. 6 A and 6B. P is a typical node in the domain at which
the dependent variable is to be evaluated. The PDE solution
procedure is as follows:

a. find all the cells that share the current node (i.e. node P).
b. for each one of these cells;

1. calculate the cc coordinates, and the coordinates of w, s, e
and n intersections.

ii. calculate T, by weighted averaging between the two cc’s
that share e (i.e. ccl and cc2). Similarly, evaluate T, T, and
T,.

iii. evaluate T, from the discretized CCFDM form of the
model equation.

c. update node P by weighted averaging from all adjacent cell
centres.

The calculations start with an initial guess at P, which is
then updated iteratively until the convergence criterion is
satisfied.

EXAMPLES

FIGS.7At0 7D, 8A, 8B and 9A to 9C illustrate graphically
first example test cases with uniform structured mesh, clus-
tered structured mesh, unstructured triangulated mesh, and
unstructured refined mesh, as well as comparisons between
the CCFDM solution, FEM and exact solutions.

In FIGS. 7A to 7D, a sample test case using the Laplace
equation on a unit square with Dirichlet boundary conditions
is illustrated. The Laplace equation for the sample test is
described according to the following equations:
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FPT  PT

ET®) =0, ¥ (x,»e 0, 0x(,1)

oy T
T, 0)=T(x, 1)=T(1, y)=0, TO, y) = 1

Different meshes are shown for the unit square. In FIG. 7A,
a uniform structured mesh is shown. In FIG. 7B, a clustered
structured mesh is shown. In FIG. 7C, an unstructured (trian-
gulated) mesh is shown. In FIG. 7D, an unstructured refined
mesh is shown.

FIG. 8A shows the CCFDM solution to the sample test case
using the Laplace equation on a unit square, in accordance
with an embodiment of the present invention. As compared to
the exact solution shown in FIG. 8B, the approximated ver-
sion using CCFDM shows a solution which closely matches
the exact solution.

FIGS. 9A to 9C show a comparison of CCFDM, FEM and
the exact solution along horizontal lines y=0.005, 0.5 and
0.95; respectively. As shown, both the CCFDM and FEM
provide solutions which closely match the exact solution.

A second example was conducted with a coarse mesh and
fine mesh for a Poisson equation on a unit disk with Dirichlet
boundary conditions. The coarse mesh is shown in FIG. 10A
and the fine mesh is shown in FIG. 10B. The second example
is described according to the following equations:

*PT  FPT
S5 t37 = LY@ e Tx =0y edQ
dxz - Ayt

When run, the results were compared to the exact solution.
In particular, the relative error (RE) and root mean square
error (RMSE) for the above example is shown in Table 1:

TABLE 1

Error compared to Exact Solution

Mesh RE RMSE
Coarse 3.43% 6.115e-04
Fine 2.03 1.842e-04

FIGS. 11A to 11C illustrate third example results by the
21x41 grid shown in FIG. 11 A with CCFDM solution shown
in FIG. 11B and the TFDM solution shown in FIG. 11C.

The third example was conducted on a square with
Dirichlet and Neumann boundary conditions according to the
following equations:

orT o 0V 0,0)x(4, 4
W+B_)12_ ¥ (x, y) e (0,0)%x(4,4)

aT
T(0, y) =80, T4, y) =0, T(x, 4) = 180, B_y(x’ 0)=0

As shown, CCFDM and TFDM provide similar numerical
approximations.

FIGS. 12A to 12E illustrate graphically fourth example
results and relative difference contours on hexagonal ring
between CCFDM solution and the FEM solution. In FIG.
12A, the hexagonal ring is illustrated.

In FIGS. 12B, 12C and 12D, a coarse mesh, a clustered
mesh near the discontinuities, and a fine mesh are illustrated;
respectively.
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In FIG. 12E, the relative differences between the CCFDM
solution and the FEM solution are illustrated. As shown, the
relative differences between these methods are low. However,
the inventors have appreciated that the numerical approxima-
tion provided by CCFDM provides a simpler and faster
approach using discretized partial differential equations. The
approach requires less memory and may be adaptable to a
wider range of applications.

In particular, CCFDM may be used to solve both compress-
ible fluids and non-compressible fluids in the same equation.
Extension of CCFDM Formulation to 3D

The extension of the CCFDM to 3-dimensional problems
is straightforward. Consider, for example, the tetrahedral cell
shown in FIG. 13. Each face of this 4-faced volume element
is triangular in shape. To simplify the discussion, the global
Cartesian coordinate system is placed with its origin at one of
the vertices of the tetrahedron OABC. Face OAB lies in the
xy-plane, face OBC lies in the yz-plane and face OCA lies in
the xz-plane.

For 3 Dimensional problems, the preferred procedure is as
follows:

1. Given the coordinates of A, B and C, calculate the coordi-
nates of the centroid cc of the cell.

2. Draw a line through cc parallel to the z-axis, extending it
until it intersects two faces of the cell, at points n (on face
ABC) and s (on face OAB) in the figure. Determine the
coordinates of n and s.

3. Draw a line through cc parallel to the y-axis, extending it
until it intersects two faces of the cell, at points w (on face
OCA) and e (on face ABC) in the figure. Determine the
coordinates of w and e.

4. Draw a line through cc parallel to the x-axis, extending it
until it intersects two faces of the cell, at points f (on face
ABC) and b (on face OBC) in the figure. Determine the
coordinates of f and b.

5. Use three 1D mappings to map the non-uniform stencil in
the physical domain to a computational stencil which has
uniform spacing in each direction.

6. Apply the appropriate finite difference formulas at the cell
centroid to discretize the governing PDEs.

7. Use interpolation formulae to evaluate the dependent vari-
ables at the points n, s, w, e, fand b.

8. Use the values obtained in #7 and the discretized equations
in #6 to determine the values of the dependent variables at the
cell centroid.

To determine the solution at a node in 3D space, all cells
that share that node are first identified. The above procedure is
applied to each of these cells to determine the values at the
centroids of these cells. Then, a weighted average of the cell
centroid values can be used to determine the nodal value.

Embodiments ofthe invention may include various steps as
set forth above. While described in a particular order, it should
be understood that a different order may be taken, as would be
understood by a person skilled in the art. Furthermore, the
steps may be embodied in machine-executable instructions.
The instructions can be used to cause a general-purpose or
special-purpose processor to perform certain steps. Alterna-
tively, these steps may be performed by specific hardware
components that contain hardwired logic for performing the
steps, or by any combination of programmed computer com-
ponents and custom hardware components.

Elements of the present invention may also be provided as
a machine-readable medium for storing the machine-execut-
able instructions. The machine-readable medium may
include, but is not limited to, floppy diskettes, optical disks,
CD-ROMs, and magneto-optical disks, ROMs, RAMs,
EPROMs, EEPROMs, magnetic or optical cards, propagation
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media or other type of media/machine-readable medium suit-
able for storing electronic instructions. For example, the
present invention may be downloaded as a computer program
which may be transferred from a remote computer (e.g., a
server) to a requesting computer (e.g., a client) by way of data
signals embodied in a carrier wave or other propagation
medium via a communication link (e.g., a modem or network
connection).

As well, the procedure described above can be imple-
mented on any arbitrary cell topology, ie., any polyhedral
shape, and any combination of cell shapes, referred to as
hybrid meshes.

The CCFDM method described above is designed to be
applicable to a number of physical problems that can be
mathematically modeled by partial differential equations
with associated initial conditions (for time-dependent prob-
lems) and/or boundary conditions. These include, but are not
limited to providing output data and/or the manual or auto-
mated computer modelling and/or control of at least the fol-
lowing potential applications:

steady and unsteady fluid and gas flows

multi-component and multiphase fluid flows

solid mechanics, elasticity, stress analysis

heat conduction

fluid flow and heat transfer

scour simulations

sediment transport

electrostatics, electromagnetics

fluid-structure interaction

multiphysics simulations

cardiovascular flows

higher-order numerical schemes

direct numerical simulation of turbulence

Although this disclosure has described and illustrated cer-
tain preferred embodiments of the invention, it is also to be
understood that the invention is not restricted to these particu-
lar embodiments rather, the invention includes all embodi-
ments which are functional, or mechanical equivalents of the
specific embodiments and features that have been described
and illustrated herein. Furthermore, the various features and
embodiments of the invention may be combined or used in
conjunction with other features and embodiments of the
invention as described and illustrated herein. The scope of the
claims should not be limited to the preferred embodiments set
forth in the examples, but should be given the broadest inter-
pretation consistent with the description as a whole.

As used herein, the aforementioned acronyms shall have
the following meanings:

PDE—Partial Differential Equation

TFDM—Traditional Finite Difference Methodology
CCFDM—cCell-Centered Finite Difference Methodology
CCFVM—Cell-Centered Finite Volume Methodology
VCFVM—Vertex-Centered Finite Volume Methodology
CV—Control Volume

FEM—Finite Element Methodology

The embodiments of the invention in which an exclusive
property or privilege is claimed is defined as follows:
1. A system for determining fluid flow of compressible and
non-compressible liquids, the system comprising:
aprocessor coupled to a memory, the processor configured
for implementing the steps of:
receiving a model of an object defined as a plurality of
cells having a plurality of nodes within a cartesian
coordinate system for a region of interest;
discretizing a partial differential equation corresponding
to the received model of the object;
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for each node P in the plurality of nodes:

i. locating all neighbouring cells that share the node P,
each of the neighbouring cells having a cell center;
and
for each said neighbouring cell,

calculating cell center coordinate points for the
cell center,

establishing a finite difference stencil centered at
the cell center coordinate points, said finite dif-
ference stencil comprising orthogonal axis par-
allel to coordinate system axis for the region of
interest;

identifying and designating points of intersec-
tion of the finite difference stencil with boundary
edges of said cell as intersection points w, s, €
and n,

calculating an approximate solution of the par-
tial differential equation at each ofthe w, s, e and
n intersection points;

ii. approximating the partial differential equation at
the cell center of each of the neighbouring cells
using the stencil in each cell and the discretized
partial differential equation; and wherein the dis-
cretized partial differential equation includes the
calculated approximate solution of the partial dif-
ferential equation at each of the w, s, e and n inter-
sections points;

iii. updating a solution of the partial differential equa-
tion at the node P by using the solution of the
approximated discretized partial differential equa-
tion at all the neighbouring cell centers; and

iteratively updating the solution for all the nodes P from
an initial guess until a convergence criterion is satis-
fied,

identifying, analyzing and outputting different flow
regimes relative to said object based on the iteratively
updated solution; and

determining and displaying the behaviour of the fluid
flow interacting with the received model of the object
and its boundary by using the output different flow
regimes.

2. The system of claim 1, wherein the step of calculating
the solution of the partial differential equation at each of the
W, s, ¢, and n intersection points by the processor includes a
weighted averaging between the neighbouring cells that share
each of said intersection points w, s, e, and n.

3. The system of claim 1, wherein the model of the object
is in two dimensions.

4. The system of claim 1, wherein the model of the object
is in three dimensions and the points of intersection further
include intersection points f and b.

5. The system of claim 1, wherein the discretized partial
differential equation is a difference equation.

6. The system of claim 1, wherein the updating of the
solution of the partial differential equation at the node P by
the processor includes weighted averaging of the solution of
the approximated discretized partial differential equation at
the cell centers of all the neighbouring cells.

7. A method of using a computer comprising a processor,
memory and preprogrammed instructions to approximate a
partial differential equation for determining fluid flow of
compressible and non-compressible liquids, the method com-
prising:

activating said computer to implement said prepro-

grammed instructions to perform the steps of:
discretizing the partial differential equation by said proces-
sor;
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receiving a model of an object defined as a plurality of cells

having a plurality of nodes within a cartesian coordinate

system for region of interest in said memory by said
processor;

for each node P in the plurality of nodes:

i. locating all neighbouring cells that share the node P,
each of the neighbouring cells having a cell center;
and
for each said neighbouring cell,

calculating cell center coordinate points for the cell
center,

establishing a finite difference stencil centered at
the cell center coordinate points, said finite dif-
ference stencil comprising orthogonal axis par-
allel to coordinate system axis for the region of
interest,

identifying and designating points of intersection
of the finite difference stencil with boundary
edges of said cell as intersection points w, s, €
and n,

calculating an approximate solution of the partial
differential equation at each of the w, s, e and n
intersection points;

ii. approximating the partial differential equation at the
cell center of each of the neighbouring cells using the
stencil in each cell and the discretized partial differ-
ential equation; and wherein the discretized partial
differential equation includes the calculated approxi-
mate solution of the partial differential equation at
each of the w, s, e and n intersections points;

iii. updating a solution of the partial differential equation
at the node P by using the solution of the approxi-
mated discretized partial differential equation at all
the neighbouring cell centers; and

iteratively updating the solution for all the nodes P from an

initial guess until a convergence criterion is satisfied,

identifying, analyzing and outputting different flow
regimes relative to said object based on the iteratively
updated solution; and

determining and displaying the behaviour of the fluid flow

interacting with the received model of the object and its

boundary by using the output different flow regimes.

8. The method of claim 7, wherein the step of calculating
the solution of the partial differential equation at each of the
W, s, e, and n intersection points by the processor includes a
weighted averaging between the neighbouring cells that share
each of said intersection points w, s, e, and n.

9. The method of claim 7, wherein the model of the object
is in two dimensions.

10. The method of claim 7, wherein the model of the object
is in three dimensions and the points of intersection further
include intersection points f and b.

11. The method of claim 7, wherein the discretized partial
differential equation is a difference equation.

12. The method of claim 7, wherein the step of updating of
the solution of the partial differential equation at the node P
includes weighted averaging of the solution of the approxi-
mated discretized partial differential equation at the centers of
all of said neighbouring cells.

13. A non-transitory computer readable medium having
instructions stored thereon that when executed by a computer
implement a method for approximating a partial differential
equation for determining fluid flow of compressible and non-
compressible liquids, the method comprising:
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discretizing the partial differential equation;

receiving a model of an object defined as a plurality of cells
having a plurality of nodes within a cartesian coordinate
system for a region of interest;

for each node P in the plurality of nodes:

i. locating all neighbouring cells that share the node P,
each of the neighbouring cells having a cell center;
and
for each said neighbouring cell,

calculating cell center coordinate points for the cell
center,

establishing a finite difference stencil centered at
the cell center coordinate points, said finite dif-
ference stencil comprising orthogonal axis par-
allel to coordinate system axis for the region of
interest,

identifying and designating points of intersection
of the finite difference stencil with boundary
edges of said cell as intersection points w, s, €
and n,

calculating an approximate solution of the partial
differential equation at each of the w, s, e and n
intersection points;

ii. approximating the partial differential equation at the
cell center of each of the neighbouring cells using the
stencil in each cell and the discretized partial differ-
ential equation; and wherein the discretized partial
differential equation includes the calculated approxi-
mate solution of the partial differential equation at
each of the w, s, e and n intersections points;
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iii. updating a solution of the partial differential equation
at the node P by using the solution of the approxi-
mated discretized partial differential equation at all
the neighbouring cell centers; and

iteratively updating the solution for all the nodes P from an

initial guess until a convergence criterion is satisfied,

identifying, analyzing and outputting different flow
regimes relative to said object based on the iteratively
updated solution; and

determining and displaying the behaviour of the fluid flow

interacting with the received model of the object and its

boundary by using the output different flow regimes.

14. A computer readable medium of claim 13, wherein the
step of calculating the solution of the partial differential equa-
tion at each of the w, s, e, and n intersection points includes a
weighted averaging between the neighbouring cells that share
each of said intersection points w, s, e, and n.

15. The computer readable medium of claim 13, wherein
the model of the object is in three dimensions and the points
of intersection further includes intersection points f and b.

16. A computer readable medium of claim 13, wherein the
discretized partial differential equation is a difference equa-
tion.

17. A computer readable medium of claim 13, wherein the
updating of the solution of the partial differential equation at
the node P includes weighted averaging of the solution of the
approximated discretized partial differential equation at the
cell centers of all the neighbouring cells.
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